
90-R186 014	ON THE FEY	NMAN-KAC'S THEORY(U	FORMULA AI	AD ITS APPL	ICATIONS T	ro 1/1	
UNCLASSIFIED	HILL CENTE OCT 86 TR-	R FOR STOCK	HASTIC PRO TR-87-1096	; R L KA	ARANDIKAR F/G 12/		
						150	i
·							
,							
i.							

AD-A186 014

860 mile 1 (1233) e (12 1.4) e 14.3 e 27.5					
	REPORT DOCUM	ENTATION PAG	E		
NA REPORT SECURITY CLASS FOLATION	TO RESTRICTIVE MARKINGS				
10.20010100					
tuisē pum tripuass Pipatijskaut⊖em trii. Nik		a staleut on Avaluable to be Report Approved for Public Release; Distribution			
<u>- 15.</u> 26. dec _u assification downgraping sched					
. 1 .1.7					
A PERSONAL DRUMALING DRIMAGARACA	BER S.	AFOSR-TE- 87-1096			
•		AFUSA	-18- 87	- 1096)
SE NAME OF PERFORMING ORGANIZATION	Bb. OFFICE SYMBOL	TA NAME OF MON	TORING ORGANI	ZATION	
University of North Carolina	If applicable.	AFOSR NM			
	<u> </u>				
le Aponess city stem and XIP dame. Jenten for Stochastro Processe		35. ACOMESS (City)	. State and 21P Code	•,	
Department, Phillips Hall 039-	7,	Bolling AFB, DC 20332-6448			
Chapel Hill, NC 27514					···
EN NAME OF FUNDING SPONSORING ONDANIZATION	86. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT IDE	ENTIFICATION N	JMBER
AF 3SP	nn	F49620 85 (0144		
Se ADDRESS City State and ZIP Code:	<u> </u>	10 SOURCE OF FU	INDING NOS.		
Blag. 410		PROGRAM	PROJECT	TASK	WORK UN
Bolling AFB, CC		6.1102F	2304	NO. □	NO.
1 TITLE Include Security Classification		- 0.11021	2504	/ 1 .)	
ON THE FEYNMAN-KAC'S FORMULA AN	ND ITS APPLICAT:	IONS TO FILTER	ING THEORY		1
12. PERSONAL AUTHORISI	<u> </u>				
R.L. Karandikar	1746 FD 0/20/06	14 DATE OF REPO	AT YE Ma Day	15. PAGE C	OUNT
Technical 10.01 9/30/86,	-28/05/9 03#3vc	Oct. 86	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	21	
16 SUPPLEMENTARY NOTATION					
17 COSATI CODES	18 SUBJECT TERMS	Continue on reverse if	recessary and identi	ly by block number	r)
FIELD SHOUP SUB-SH	reywords:				
ACCOUNT COULCINGS					
19 ASSTRACT					
Let (X_{ξ}) be a	Markov process,	not assumed to 1	be time		
homogeneous. It is well known that	t 1 = (t, x,) i	s a time homoger	ne cus		, • •
				TIC	1
Markov process. Let 4 be its gener	rator, ine l'eynma	En⇒vac.2 Iolaid		- FOTE	
X takes the following form if the	equation			OCT 0 7.1987	
į.				OCT 0 7.1987	
(1.1) A				^	W.
admits a solution v, then v had	the represents	ion for - < +			
	_		,	—	
(1.2) $\forall (a, X_s) = E \left[\forall (t, X_s) \right]$	f) $\exp(\int_{-\infty}^{\infty} c(n^*X^n)$	$du) \sigma(X_s) $.			••
We prove this under general condit.	ions on (Y)	- ,			
ARTES TO THE STANDARD STAND TO THE STANDARD STAN		21 ABSTRACT SEC	URITY CLASSIFIC	CATION	
	UNCLASSIFIED				
UNCLASSIFIED UNL MITED 🖾 SAME AS APT	_ OTIC USERS _				
TAUDIVION: 318 CORESPONDIAL		225 TELEPHONE	NUMBER)	22c. OFFICE SYN	180L
Regay Asvitch Mill (17	ر برزاد به	919-962-230	7	AFOSR/NM	

CENTER FOR STOCHASTIC PROCESSES

AFOSR-TR. 87-1096

Department of Statistics University of North Carolina Chapel Hill, North Carolina

ON THE FEYNMAN-KAC'S FORMULA AND ITS APPLICATIONS TO FILTERING THEORY

by

Rajeeva L. Karandikar

Technical Report No. 161
October 1986

ON THE FEYNMAN-KAC's, FORMULA AND ITS APPLICATIONS TO FILTERING THEORY

RAJEEVA L. KARANDIKAR

Center for Stochastic Processes
University of North Carolina
and
Indian Statistical Institute
7, S.J.S. Sansanwal Marg, New Delhi

Technical Report No. 161 (UNC)

Technical Report No. 8408 (ISI)

Accession For							
NTIS GRA&I							
DTIC TAB							
Unannounced							
Justification							
Ву	Abuston/						
Distribution/							
Avai	lability	Codes					
-	Avail ar	od/or					
Dist	Specia	al					
(2250	1 - τ						
1	1 1						
101	1						
14-1	1						

Research partially supported by the Air Force Office of Scientific Research Contract #F49620 85 C 0144 and by the Indian Statistical Institute.

ON THE FEYNMAN-KAC'S. FORMULA AND ITS APPLICATIONS TO FILTERING THEORY

Rajeeva L. Karandikar Indian Statistical Institute 7, S.J.S. Sansanwal Marg, New Delhi

Center for Stochastic Processes University of North Carolina

1. Introduction: Let (X_t) be a Markov process, not assumed to be time homogeneous. It is well known that $\hat{X}_t = (t, X_t)$ is a time homogeneous Markov process. Let A be its generator. The Feynman-Kac's formula for X_t takes the following form if the equation

$$(1_41) \qquad \qquad Av + cv = 0$$

admits a solution v, then v has the representation, for s < t

(1.2)
$$\forall (s, X_s) = E \left[\forall (t, X_t) \exp(\int_s^t c(u, X_u) du) | \sigma(X_s) \right].$$

We prove this under general conditions on $(X_+)_*$

Then we come to the question of existence of solution to (1.1). We show that under some regularity conditions on (X_{t}) , (1.1) has a solution for a rich class of boundary conditions. This implies that the 'dual' equation to (1.1) admits a unique solution. The 'dual' equation is an equation for measures on the state space of (X_{t}) and its unique solution is the distribution of X_{t} under an absolutely continuous change of the underlying probability measure by a multiplicative functional.

These results on the measure valued equations significantly extend results given in [3] on the conditional distributions for the nonlinear filtering problem (in the white noise approach).

2. Let (S, \S) be a measurable space. Let (X_{t}) be an (S, \S) valued Markov process on a probability space (Ω, A, π) with transition probability function P, i.e.

$$\{\omega: X_{+}(\omega) \in B\} \in A$$

and

(2.1)
$$E_{\pi}\left[1_{B}(X_{t})|\frac{r^{X}}{s}\right] = P(a, X_{s}, t-s, B)$$
 a.s. π

for all $0 \le s \le t < \infty$, B $\varepsilon \le s$. Here, the function P(s,x,t,B) on $\{0 \le s < \infty, t \ge 0, x \in S, B \in S\}$ is assumed to satisfy the following conditions.

(2.2) For $s \ge 0$, $t \ge 0$, $x \in S$; P(s,x,t,.) is a countably additive probability measure on (S, S).

(2.3) For
$$s \ge 0$$
, $x \in S$, $B \in \S$; $P(s,x,0,B) = 1_B(x)$.

(2.4) For $t \ge 0$, $B \in \S$; $(s,x) \rightarrow P(s,x,t,B)$ is a $B([0,\infty)) \oplus \S$ measurable function (B(E) denotes the Borel σ -field of a topological space E and \bigoplus denotes the product of σ -fields).

(2.5) For
$$s \ge 0$$
, $u \ge 0$, $t \ge 0$, $x \in S$, $B \in S$; we have

$$\int_{S} P(s+t,z,u,B) P(s,x,t,dz) = P(s,x,t+u,B)$$

Throughout, $\frac{\chi^{X}}{\xi t}$ denotes the smallest σ -field with respect to which the family $\{X_{u}:0\leq u\leq t\}$ is measurable. We also assume that

(2.6) the process (X_t) is $\frac{X}{t}$ - progressively measurable, i.e. for all $t_0 < -$, the mapping $(t,w) + X_t(w)$ from $[0,t_0] \times \Omega + S$ is $B([0,t_0]) \otimes F_t$ measurable.

Let $\hat{S} = [0, \infty) \times S$, $\hat{S} = B([0, \infty)) \otimes S$ and J be the class of bounded real valued \hat{S} measurable functions on \hat{S} .

Definition: A sequence $\{f_k\} \subseteq \underline{J}$ is said to converge weakly to $f \in \underline{J}$, written as w-lim $f_k = f$, if $f_k(x)$ is uniformly bounded and for each $x \in S$, $f_k(x)$ converges to f(x).

For $f \in \underline{J}$, $t \ge 0$, let $T_t f : S \to IR$ be defined by

(2.7)
$$(T_tf)(s,x) = \int f(s+t,z) P(s,x,t,dz), (s,x) \in \hat{S},$$

Using the properties of P, it can be checked that $T_t f \in \underline{J}$ and that for $u \ge 0$, $t \ge 0$,

(2.8)
$$T_u \left[T_t f \right] = T_{t+u} f$$
, $f \in \underline{J}$.

Thus $\{T_t : t \ge 0\}$ is a semigroup of operators (from \underline{J} into itself).

Remark: It is well known and easy to check that $\hat{X}_t = (t, X_t)$ is a Markov process with stationary transition probability function \hat{P} given by

$$\hat{P}(t, (s,x), B) = P(s,x,t,B^{(s+t)}), B \in \hat{S}$$

where B^{U} denotes the u-section of $B \subseteq S$. The semigroup $\{T_{t}: t \geq 0\}$ defined above is the usual semigroup associated with the transition function P (as in [2], section 2.1).

We will now recall the definition and some properties of the weak generator A of $\{T_t:t\geq 0\}$. Let J_C be given by

$$J_{C} = \{f \in J : w-lim \ T_{t}f = f\}$$

<u>Definition</u>: Let, $\underline{\underline{D}}_{A}$ be the class of $f \in \underline{\underline{J}}$ for which the

(2.9)
$$w-\lim_{t\to 0} \frac{T_t f - f}{t} = g$$

exists and belongs to \underline{J}_{O} and for $f \in \underline{D}_{A}$, define Af = g, where g is given by (2.9).

The following properties are easy to prove. We will only state them here. For a proof see chapter 1 in [2].

(2.10)
$$T_t(\underline{p}_A) \subseteq \underline{p}_A$$
 and for $f \in \underline{p}_A$, $A(T_t f) = T_t A f$

(2.11) For $f \in J_0$, $t + (T_t f)(s,x)$ is a right continuous function for all $(s,x) \in \hat{S}$.

(2.12) For
$$f \in D_A$$
, we have, for all $(s,x) \in S$, $t \ge 0$

$$(T_tf)(s,x) = f(s,x) + \int_0^t (T_u Af)(s,x)du$$

In (2.13) above, f_k can be taken to be

$$f_k(s,x) = \int_0^\infty k e^{-kt} (T_t f)(s,x)dx$$
.

The property (2.12) has the following important consequence.

<u>Proposition 1</u>: For $f \in D_A$, M_t given by

(2.14)
$$M_{t}(\omega) = f(t, X_{t}(\omega)) - \int_{0}^{t} (Af)(u, X_{u}(\omega)) du$$

is a martingale with respect to the defields Ft.

<u>Proof</u>: The progressive measurability of (X_t) implies the $\underline{\underline{\Gamma}}_t^X$ measurability of M_t . Since f, Af ε $\underline{\underline{V}}$, they are bounded and hence M_t is itself bounded for each t. Now (2.1) implies

(2.15)
$$E_{\pi} \left[f(t, X_{t}) \middle| \underline{\underline{r}}_{s}^{X} \right] = \int f(t, z) P(s, X_{s}, t-s, dz)$$

$$= (\underline{T}_{t-s} f) (s, X_{s})$$

for $s \le t$. Similarly for $s \le u$, we have

(2.16)
$$E_{\pi} \left[(Af)(u, X_u) | \underline{F}_{S}^{X} \right] = (T_{u-S} Af)(s, X_S).$$

Using (2.11), (2.12), (2.15) and (2.16), it can be checked that

$$E_{\pi} \left[M_{t} - M_{s} | \underline{\underline{r}}_{s}^{X} \right] = 0.$$

We now turn our attention to the Peynman-Kac's formula. Our next result is a step in this direction.

Let $g : [0,t_0] \times S + IR$ be a $B([0,t_0]) \times S$ measurable function such that

(2.17)
$$E_{\pi} \left[\int_{0}^{t} |g(u, X_{u})| du \right] < \infty$$

and for a positive integrable function $a : [0, t_o] + IR$,

(2.18)
$$g(u, x) \leq a(u)$$
 for all $x \in S$, $u \in [0, t_0]$.

Fix $0 \le s \le t$ and let

(2.19)
$$B_{t}(\omega) = \exp(\int_{a}^{t} g(u,X_{u}(\omega))du).$$

Then we have

Theorem 2: Let $f \in \underline{\underline{p}}_A$ and g satisfy (2.17), (2.18). Then

(2.20)
$$Z_t = f(t, X_t) \cdot B_t - \int_{R}^{t} [(Af)(u, X_u) + g(u, X_u)] \cdot B_u du$$

is an $\sum_{t=1}^{X}$ martingale for $t \ge s$ (where B is given by (2.19)).

<u>Proof</u>: It is easy to see that Z_t is $\frac{r^X}{t}$ measurable. The condition (2.18) implies that B_t is bounded. Since f, Af are also bounded the condition (2.17) gives the integrability of Z_t . To prove the martingale property, suffices to prove that for $s \le r \le t$, $C \in \frac{r^X}{t}$,

(2.20)
$$E_{\pi} \left[(Z_{t} - Z_{r}) \cdot 1_{C} \right] = 0 .$$

Let $f_1(t, \omega) = f(t_0, X_{t_0}(\omega)) - \int_{t_0}^{t_0} (Af)(u, X_{u_0}(\omega)) du$. Then by Proposition 1, it follows that for $0 \le t \le t_0$

(2.21)
$$E_{\pi} \left[f_{1}(t, \cdot) | \underline{F}_{t}^{X} \right] = f(t, X_{t})$$

and hence

(2.22)
$$E_{\pi}\left[1_{\mathbf{C}}\cdot(Z_{\mathbf{t}}-Z_{\mathbf{r}})\right] = E_{\pi}1_{\mathbf{C}}\cdot\{f_{1}(t,\cdot)B_{\mathbf{t}}-f_{1}(r,\cdot)B_{\mathbf{r}}-\int_{\mathbf{r}}^{t}\{(Af+gf)(u,\chi_{u})du\},$$

Now for each ω , $f_1(t,\omega)$, $B_t(\omega)$ are absolutely continuous functions and hence

$$f_{1}(t,\omega)B_{t}(\omega)-f_{1}(r,\omega)B_{r}(\omega) = \int_{r}^{t} \frac{d}{du} \Big[f_{1}(u,\omega)B_{u}(\omega) \Big] du$$

$$= \int_{r}^{t} \{ f_{1}(u,\omega)\cdot g(u,X_{u}(\omega))B_{u}(\omega) + (Af)(u,X_{u}(\omega))\cdot B_{u}(\omega) \} du.$$

Thus

(2.23)
$$E_{\pi} \left[f_{1}(t, \cdot) B_{t} - f_{1}(r, \cdot) B_{r} \right] = E 1_{0} \int_{r}^{t} f_{1}(u, \cdot) g(u, X_{u}) B_{u} du$$

$$+ E 1_{0} \int_{r}^{t} (Af)(u, \cdot) B_{u} du$$

$$= E 1_{0} \int_{r}^{t} (Af + gf)(u, X_{u}) du$$

using (2.21) once again. Now (2.22) and (2.23) give the required euqlity

$$E\left[1_{C}\left(Z_{t}-Z_{r}\right)\right]=0.$$

Remark: It can be verified that

$$Z_{t} = M_{t} B_{t} - \int_{s}^{t} M_{u} dB_{u}$$

where M is given by (2.14). Hence if M were right continuous, it would follow from the "integration by parts formula for martingale"

(See [5]) that $(Z_t, \frac{X}{t^t})$ is a martincale. However, in general M_t need not be right continuous and hence we have given a direct prof.

The following is the Feynman-Kac's formula for a time in homogeneous Markov process.

Theorem 3: Let $0 < t_0 < \infty$ be fixed. Let $c : [0, t_0] \times S + IP$ and g : S + IR be bounded measurable functions. Suppose that $\mathbf{v} \in \mathbb{F}_A$ is a solution to

(2.24)
$$[\Lambda \mathbf{v} + c \mathbf{v}] (\mathbf{u}, \mathbf{x}) \mathbf{1}_{\{\mathbf{u} < \mathbf{t}\}} = 0$$

and

(2.25)
$$v(t_x,x) = g_C(x)$$
,

Then v admits a representation, for $s < t_{C}$

(2.26)
$$v(s,X_s) = E_{\pi} \left[g_{\Gamma}(X_{t_{\Gamma}}) \exp(\int_{s}^{t_{\Gamma}} c(u,X_{u}) du) | \underline{F}_{s}^{X} \right] \quad \text{a.e. } \pi.$$

<u>Proof</u>: Fix $s < t_c$. Take f = v and g = c in Theorem 2 to obtain that $(Z_t, \frac{r^X}{t})_{s < t < t_c}$ is a martingale, where

(2,27)
$$Z_{t} = v(t,X_{t}) \exp(\int_{s}^{t} v(u,X_{u})du),$$

Here we have used the fact that v satisfies (2.24) or that the second term appearing in the expression for Z_{t} is zero. Thus

$$E_{\pi}\left[Z_{t_0}|\underline{\underline{r}}^{X}\right] = Z_{s}$$
 a.s. π

This is same as (2.20) since $v(t_{0},x) = g_{0}(x)$.

3. In this section we consider the question as to under what conditions on c_*v_* ($X_{\underline{t}}$) does the problem (2.24), (2.25) admit a solution. Of course, if the solution exists, it has to satisfy (2.26) and this gives a clue as to what conditions one should put on $c_*g_*(X_{\underline{t}})_*$.

Suppresentant S is a topological space, $\frac{S}{2}$ is its Borel σ field. Let $\frac{1}{X'}$ be the space of all right continuous mappings $\frac{X}{X'}$ from $[0,\infty)$ into S. We will denote by $\frac{X}{X'}$ the value of $\frac{X}{X'}$ at t. Let $\frac{S}{2T} = \sigma(\frac{X}{X'} : S \le 0 \le T)$. We assume that

and that for all $(s,x) \in S$, there exists a probability measure $P_{s,x}$ r. $(X, \frac{s}{2})$ such that for $0 \le t_0 \le t_1 \le \dots \le t_k, y_0 \in S$, $A_1, A_2, \dots, A_k \in S$; $k \ge 1$, we have

(3.2)
$$P_{t_{i},y} = (X_{i} \in A_{i} : 1 \le i \le k) = \int ... \int_{i=1}^{k} 1_{A_{i}} (y_{i}) P(t_{i-1}, y_{i-1}, t_{i} - t_{i-1}, dy_{i}).$$

Remark The main thrust of this assumption is that $P_{s,x}$ is realized on X. The relation (2.1) and (3.2) imply that for $\{t_i\},\{A_i\}$ as in (3.2), we have

(3.4)
$$\pi(X, \varepsilon B|\underline{\underline{r}}^X) = P_{t_0} N_{t_0}$$
 a.s. π

Cimilarly, it can be proved that for s < t, $B \in \frac{L}{2m}$, $x \in S$,

(3.5)
$$P_{s,x}(B|X_t^s) = P_{t,\underline{X}_t}(3)$$
 3.s. $P_{s,x}$

We are now in a position to prove a 'converse' to the Feynman-Kac's formula.

Theorem 4: Let $0 < t_0 < \infty$ be fixed. Let $c : [0,t_0] \times S + IR$ be a bounded continuous function. Let $f \in \underline{p}_{\Lambda}$. Let $v : \hat{S} + IR$ be defined by

(3.6)
$$v(s,x) = E_{p_{s,x}} \left[f(t_{0}, X_{t_{0}}) \exp(\int_{s}^{t_{0}} c(u, \underline{X}_{u}) du) \right], \quad s < t_{0}$$

$$= f(s,x) \qquad , \quad s \ge t_{0}.$$

Then $v \in \underline{\underline{p}}_A$ and $Av = f_1$ where

(3.7)
$$f_1(s,x) = -c(s,x)v(s,x)$$
, $s < t_0$
= $(Af)(s,x)$ $s \ge t_0$.

<u>Proof</u> Since v(s,x) = f(s,x) for $s \ge t_0$, we have

$$(T_t^{\vee})(s,x) = (T_t^{\circ})(s,x)$$

for $s \ge t_0$, $x \in S$, $t \ge 0$. Hence for $s \ge t_0$, $x \in S$.

For $\underline{X} \in X$, $s \leq t_c$ let us define

(3.9)
$$C_{s}(\underline{X}) = \exp(\int_{s}^{t_{o}} c(u, \underline{X}_{u}) du).$$

Then for $s \le t_0$, we have

$$v(s,x) = F_{p_{s,x}} \left[f(t_{0}, X_{t_{0}}) c_{s}(\underline{x}) \right].$$

For s < t_o, s + t < t_o, we thus have

$$(3.10) \qquad (T_{t} \ v)(s,x) = \int v(s+t,z) \ P(s,x,t,ds)$$

$$= E_{p_{s,x}} \left[v(s+t, \underline{X}_{s+t}) \right]$$

$$= E_{p_{s,x}} \left[E_{p_{s+t}, \underline{X}_{s+t}} (f(t_{o},\underline{X}_{t_{o}}) C_{s+t}(\underline{X})) \right]$$

$$= E_{p_{s,x}} \left[f(t_{o}, \underline{X}_{t_{o}}) C_{s+t}(\underline{X}) \right].$$

by (3.5). Hence, for $s < t_c$, $\pi \in S$, $s + t < t_c$ we have

$$(3.11) \qquad \frac{(T_{t}v)(s,x)-v(s,x)}{t} = E_{p_{s,x}} \left[f(t_{o},\underline{X}_{t_{o}}) \cdot \frac{C_{s+t}(\underline{X}) - C_{s}(\underline{X})}{t} \right].$$

For all $X \in X$, we have from (3.9)

(3.12)
$$\lim_{t \to 0} \frac{c_{s+t}(\underline{x}) - c_s(\underline{x})}{t} = -c(s,\underline{x}_s) \cdot c_s(\underline{x}).$$

Further

(3.13)
$$\left|\frac{c_{s+t}(\underline{x}) - c_{s}(\underline{x})}{t}\right| = \left|-c(\tau,\underline{x}) \cdot c_{\tau}(\underline{x})\right|$$

$$\leq K$$

where K depends only on t_0 and the upper bound of |c|. The dominated convergence theorem gives that for $s < t_0$

(3.14)
$$\frac{\lim_{t \to 0} \frac{(T_t v)(s, x) - v(s, x)}{t}}{t} = E_{P_{s, x}} [f(t_0, \underline{X}_t) (-c(s, \underline{X}_s) C_s(\underline{X})]$$
$$= -c(s, x) v(s, x)$$
$$= f_1(s, x)$$

as $P_{s,x} = (x_s = x) = 1$. Also, (3.13) implies that the left hand expression in (3.11) is uniformly bounded (in s,x,t). Thus we have

(3.15)
$$w-\lim_{t\to 0} \frac{(T_t v)(s,x) - v(s,x)}{t} = f_1(s,x).$$

Remains to prove that $f_1 \in \underline{J}_0$. This will prove that $v \in \underline{D}_A$ and that $Av = f_1$. If $s \ge t_0$, $f_1(s,x) = (Af)(s,x)$ and hence for $s \ge t_0$, $t \ge 0$, $(T_t f_1)(s,x) = (T_t Af)(s,x)$. Since $Af \in \underline{J}_0$, this gives

(3.16)
$$\lim_{t \to 0} (T_t f_1)(s,x) = f_1(s,x) \quad \text{for } s \ge t_0, x \in S.$$

For s < t, we have

$$T_{t}f_{1}(s,x) - f_{1}(s,x) = -E_{P_{s,x}} \left[c(s+t,\underline{X}_{s+t}) \cdot v(s+t,\underline{X}_{s+t}) - c(s,x) \cdot v(s,x) \right]$$

$$= -E_{P_{s,x}} \left[v(s+t,\underline{X}_{s+t}) \cdot \left\{ c(s+t,\underline{X}_{s+t}) - c(s,x) \right\} \right]$$

$$-c(s,x) \cdot E_{P_{s,x}} \left[v(s+t,\underline{X}_{s+t}) - v(s,x) \right].$$

Now as t + 0, $c(s+t, \underline{x}_{s+t}) + c(s,\underline{x}_{s}) = c(s,x)$ a.e. $F_{s,x}$, as c is continuous and \underline{x}_{t} is right continuous. Hence by the dominated convergence theorem.

$$\lim_{t \to 0} \mathbb{E}_{\mathbf{s}, \mathbf{x}} \left[\mathbf{v}(\mathbf{s} + \mathbf{t}, \underline{\mathbf{x}}_{\mathbf{s} + \mathbf{t}}) \left\{ \mathbf{c}(\mathbf{s} + \mathbf{t}, \underline{\mathbf{x}}_{\mathbf{s} + \mathbf{t}}) - \mathbf{c}(\mathbf{s}, \mathbf{x}) \right\} \right] = 0.$$

The relation (3.14) implies that

$$-c(s,x) = \sum_{s,x} \left[v(s+t, \frac{x}{s+t}) - v(s,x) \right] = -c(s,x) \left[(T_t v)(s,x) - v(s,x) \right]$$

+ 0

as t + 0. These observations give

(3.17)
$$\lim_{t \to 0} (T_t f_1)(s,x) = f_1(s,x)$$
 for $s < t_0, x \notin S$.

Now (3.16), (3.17) and the fact that T_{+} f_{+} is uniformly bounded yield

$$\begin{array}{ccc} w-\lim & (T_t f_1) = f_1 \\ t+0 & \end{array}$$

Remark: Under the conditions assumed in this section and Theorem 4, the equations (2.24), (2.25) for $\mathbf{g}_0(\mathbf{x}) = \mathbf{f}(\mathbf{t}_0, \mathbf{x})$ have a unique solution \mathbf{v} on $[0, \mathbf{t}_0] \times S$ which is given by (3.6). To see this, let \mathbf{v}^* be any solution. Apply Theorem 3 to the process $\{X_{\underline{t}} : \underline{t} \geq s\}$ on the probability space $(X_{\underline{t}}, \underline{A}_{\infty}^S, P_{S, \mathbf{x}})$ to obtain, for $\mathbf{s} < \mathbf{t}_0$,

$$v'(s,\underline{X}_s) = E_{P_{s,x}} \left[f(t_o,\underline{X}_t) C_s(\underline{X}) | \underline{A}_s^s \right] \text{ a.s. } P_{s,x}.$$

Since under $P_{s,x}$ any set in A_s has measure zero or one, the conditional expectation appearing above is the unconditional expectation and thus equals v(s,x). Also $X_s = x$ a.s. $P_{s,x}$. Hence we have

$$v'(s,\underline{X}_s) = v(s,x)$$
 a.s. $P_{s,X}$.

These observation imply

$$v^{\dagger}(s,x) = v(s,x)$$
.

4. We now consider an equation dual to (2.24), namely

$$\frac{d}{dt}K_{t} = A^{*}K_{t} + g(t,.)K_{t}$$

where $\{K_t\}\subseteq \underline{M}(S)$ - the class of finite signed measures on (S,\underline{S}) . The sugation (4.1) is purely formal and is to be interpreted as

(4.2)
$$\langle f(t,.), K_t \rangle = \langle f(0,.), K_c \rangle + \int_0^t \langle Af(u,.), K_u \rangle du + \int_0^t \langle g(u,.)f(u,.), K_u \rangle du$$

for $f \in \underline{D}_{\hat{H}}$. Here, $\langle \theta, \mu \rangle$ denotes $\int \theta \ d\mu$ for $\mu \in \underline{M}(S)$ and a function $\theta:S + IR$. Thus $\langle f(t, \cdot), \mu \rangle = \int f(t, x) d\mu(x)$ for $f \in \underline{J}$. We will show that this equation with boundary condition

$$(4.3) K_o = \pi \circ K_c^{-1}$$

admits a unique solution which is given by

(4.4)
$$K_{t}(B) = E_{\pi} \left[1_{B}(X_{t}) \exp(\int_{0}^{t} g(u, X_{u}) du \right], \quad B \in \underline{S}.$$

The uniqueness will be proved in the class of $\{K_{+}\}$ satisfying

(4.5)
$$\{K_{t}\} \subseteq \underline{Y}(S), \quad t + K_{t}(B) \quad \text{is a Borel measurable function}$$
 for all $B \in \underline{S}$ and $K_{t} << \mathbb{N} \supset X_{t}^{-1}$ with

$$\left|\frac{\mathrm{d} w_{\chi^{-1}}}{\mathrm{d} x}\right| \leq M$$

for all t, for a fixed constant M.

We continue to assume that the conditions imposed on (X_t) in Section 3, are valid. We further assume that S is a complete separable metric space. We begin with a Lemma.

Lemma 5: Let $0 < t < \infty$ be fixed. Let $\mu \in M(S)$ be such that

(4.6)
$$\langle f(t,.), \mu \rangle = 0 \quad \forall f \in \underline{D}_A$$

Then $\mu \equiv 0$.

<u>Proof</u>: Let $\underline{\underline{F}}$ be the class of $f \in \underline{\underline{J}}$ for which (4.6) holds. Easy to see that if $f_k \in \underline{\underline{F}}$, w-lim $f_k = f$, then $f \in \underline{\underline{F}}$. Hence by (2.13), $\underline{\underline{J}}_0 \subseteq \underline{\underline{F}}$.

For $f \in C_h(\hat{S})$, (i.e. $f : \hat{S} + IR$ is bounded continuous), we have

$$(T_t f)(s,x) = E_{p_s,x}$$
 $f(s+t, \frac{x}{s+t}) \rightarrow f(s,x)$ as $t + 0$,

since \underline{X}_{u} is right continuous. Thus $C_{\underline{b}}(\hat{S}) \subseteq \underline{\underline{J}}_{\underline{c}} \subseteq \underline{\underline{F}}$.

Given $f \in C_b(S)$, taking $f(s,x) = f_c(x)$, we have $f \in C_b(S) \subseteq E$ and hence

(4.7)
$$\langle f_{O}, \mu \rangle = 0$$
.

The validity of (4.7) for all $f_0 \in C_b(S)$ implies $\mu = 0$ because S = 0 the Borel σ field -1 is also the smallest σ field with respect to which $C_b(S)$ is measurable.

We are now in a position to prove the assertions made at the beginning of this section. This result may be considered as a dual Feynman-Kac's formula.

Theorem 6: Suppose that g satisfies (2.17) and (2.18). Then the equation (4.2) with boundary condition (4.3) admits a unique solution in the class of $\{K_t\}$ satisfying (4.5). The unique solution is given by (4.4).

Proof: First we will prove that $\{K_{t}\}$ defined by (4.4) satisfies (4.2). Let $\{K_{t}\}$ be defined by (4.4). Easy to see that (4.3) and (4.5) are satisfied.

Taking s=0 in Theorem 2, it follows from the martingale property of Z_{t} that $E_{\pi}Z_{t}=E_{\pi}Z_{0}$. Here, Z_{t} is given by (2.20) where in turn B_{t} is given by (2.19), with s=0. Noting that with these notations,

$$<\theta$$
, $K_{t}> = E_{\pi} \theta(X_{t})B_{t}$

we conclude from the relation $E_{\pi}Z_{t} = E_{\pi}Z_{c}$ that

$$-\int_0^t <(Af+\sigma f)(u,.),K_u>du = .$$

Hence {K_t} satisfies (4.2).

To prove the uniqueness part, we will prove the following. Suppose $\{K_{\underline{t}}\}$ satisfies (4.2), (4.5) and $K_{\underline{t}}\equiv 0$. Then $K_{\underline{t}}\equiv 0$, $\underline{t}\geq 0$.

For this fix $t_0 < \infty$ and $f \in \underline{\mathbb{D}}_A$. Let v be the measure defined on $S^* = [0,t_0] \times S$ by

(4.8)
$$v(B) = E_{\pi} \int_{0}^{t_{C}} 1_{B}(u, X_{u}) du, \quad B \in \underline{S}^{*} = \underline{B}(S^{*}).$$

Then note that (2.17) implies $\int_{S^*} |g| dv < \infty$. Hence if $g_k : S^* + IR$ is defined by

(4.9)
$$S_k(s,x) = g(s,x) | 1{|g(s,x)| < k}$$

then we have -

For each k, a_k is bounded by k. By Lusins theorem (see [1], p. 187) we can get $c_{k,i} \in C_b(S^*)$, bounded by k, such that

(4.11)
$$c_{k,i} + g_k$$
 a.e. v as $i + \infty$.

Hence

(4.12)
$$\lim_{i \to \infty} \int |c_{k,i} - g_k| dv = 0.$$

Let $v_{k,i}$ be given by (3.6) for $c = c_{k,i}$. Then $A v_{k,i} = -c_{k,i} v_{k,i}$ in $[0, t_0) \times S$ by Theorem 4. Using (4.2) for $v_{k,i}$ and recalling that $K_c = 0$, we have

$$\langle f(t_0, \cdot), K_{t_0} \rangle = \langle v_{k,i}(t_0, \cdot), K_{t_0} \rangle$$

$$= \int_0^t \langle (Av_{k,i} + gv_{k,i})(u, \cdot), K_u \rangle du$$

$$= \int_0^t \langle (g - c_{k,i}) v_{k,i}(u, \cdot), K_u \rangle du .$$

Thus

$$|\langle f(t_0, \cdot), K_{t_0} \rangle| \leq M \int_0^t \langle [g - c_{k,i}] v_{k,i} | (u, \cdot), \quad c \quad X_u^{-1} > du$$

$$= M E_{\pi} \int_0^t |(g - c_{k,i}) v_{k,i} | (u, X_u) du,$$

$$= M \int |g - c_{k,i}| \cdot |v_{k,i}| dv .$$

As $i + \infty$, $v_{k,i}$ converges pointwise to v_k and is bounded by k, where v_k is given by (3.6) for $c = g_k$. This and (4.11), (4.12), (4.14) imply

$$|\langle f(t_0, \cdot), K_{t_0} \rangle| \le N \int |g - g_k| \cdot |v_k| dv$$
.

Since (4.9) implies $\sigma_k(u,x) \leq a(u)$, it follows that

$$|v_k| \leq M_1 \cdot \exp(\int_0^t a(u)du) = M_2$$

where |f| < M1. Hence

$$|\langle f(t_0,.), K_{to} \rangle| \leq M.M_2 \int |g-g_k| dv$$
.

This and (4.10) imply $\langle f(t_0,.), K_{t_0} \rangle = 0$. Since $f \in \underline{\mathbb{D}}_A$ is arbitrary, Lemma 5 gives $K_{t_0} = 0$. This completes the proof.

We will briefly consider the equation for normalized measures

(4.15)
$$N_{\epsilon}(B) = \frac{K_{\epsilon}(B)}{K_{\epsilon}(S)}$$
, $B \in \underline{S}$

where K_t is given by (4.4). It is easy to see, using (4.2) that $\{N_t\}$ satisfies.

$$(4.16) < f(t,.), N_t > 2 < f(0,.), N_0 > + \int_0^t < (Af+gf)(u,.), N_u > du - \int_0^t < f(u,.), N_u > < g(u,.), N_u > du - \int_0^t < f(u,.), N_u > < g(u,.), N_u > du - \int_0^t < f(u,.), N_$$

We will now prove that $\{N_{+}\}$ is the unique solution to this equation.

Theorem 7: The equation (4.16) with boundary condition $N_c = \pi \circ X_0^{-1}$ admits a unique solution in the class of $\{N_t\}$ satisfying (4.5). The solution is given by (4.15).

<u>Proof</u>: We need to prove uniqueness of the solution. Let N_t^* be any other solution, i.e. satisfying (4.5), (4.16) and $N_0^* = \pi \cap X_0^{-1}$. Then it can be checked that $N_t^*(S) = 1$ for all $t \ge 0$. Further, if K_t^* is defined by

(4.17)
$$K_{t}^{t}(B) = N_{t}^{t}(B) \cdot \exp(\int_{C}^{t} \langle g(u_{t}), N_{u}^{t} \rangle du)$$

then K_t^t is a solution to (4.2) and that it satisfies (4.3), (4.5). Hence by Theorem 6, $K_t^t = K_t$. This and the observation that

$$H_{t}^{r}(E) = \frac{K_{t}^{r}(B)}{K_{t}^{r}(S)}$$

give us the required equality, namely $N_{t}^{*} = N_{t}^{*}$.

5. We will now give applications of the results in the previous sections to filtering theory.

We refer the reader to [4] for a detailed discussion and background on the white noise approach to filtering theory.

We assume that the signal process (X_t) is a Markov process satisfying the conditions imposed in the previous sections.

Let K be a separable Hilbert space. Let $h: [0,T] \times S + K$ be a measurable function such that

(5.1)
$$E_{\pi} \left[\int_{0}^{T} ||h_{u}(x_{u})||_{\underline{K}}^{2} du \right] < \infty$$

Let $H = L^2([0,T], \underline{K})$ and let $\xi:\Omega \to H$ be defined by

$$(\xi(\omega))_{u} = h_{u}(X_{u}(\omega)), 0 \le u \le T$$
.

Consider the model

$$y = \xi + e$$

where $e = (e_t)$ is K-valued white noise independent of (X_t) . Here y is the observation process and Y, E, e are realised on a Quasi cylinder probability space (E, E, a) (See [4] section 6). We now state the Bayes formula. For the relevant definitions and proof, see [4].

Theorem 8: For g: S + IR bounded, measurable,

(5.2)
$$E_{\alpha}(g(X_{t})|y_{u}: u \leq t) = \int_{S} g(x) dF_{t}(y)(x)$$

where

(5.3)
$$\Gamma_{t}(y)(B) = E_{\pi} \left[I_{B}(x_{t}) \exp(\int_{0}^{t} (h_{u}(x_{u}), y_{u}) \frac{1}{k} du - \frac{1}{2} \int_{0}^{t} ||h_{u}(x_{u})||_{\underline{K}}^{2} du \right]$$

ತಾರೆ.

(5.4)
$$F_{\pm}(y)(E) = \frac{\Gamma_{\pm}(y)(E)}{\Gamma_{\pm}(y)(S)}$$

for $0 \le t \le T$, yell, TeS.

 $\Gamma_t(y), \ F_t(y) \ \text{ are known as unnormalized and normalized conditional}$ distribution of X_t given $\{y_u: u \leq t\}$, respectively.

The following is an immediate consequence of Theorems 6,7. Let $c_y(t,x) = (h_t(x), y_t)_{\underline{K}} - \frac{1}{2} ||h_t(x)||_{\underline{K}}^2$, $(t,x) \in [0,T]_X$ S, $y \in H$.

Theorem 9: Let h satisfy (5.1).(i) For all $y \in H$, $\Gamma_{t}(y)$ is the unique solution to the equation

(5.5)
$$\langle f(t,.), \Gamma_{t}(y) \rangle = \langle f(0,.), \Gamma_{0}(y) \rangle + \int_{0}^{t} \langle (Af + g_{y}f)(u,.), \Gamma_{u}(y) \rangle du,$$

f e D.

with the condition $\Gamma_{0}(y) = \pi \circ X_{0}^{-1}$ in the class of $\{K_{t}\}$ satisfying (4.5).

(ii) For all $y \in H$, $F_t(y)$ is the unique solution to the equation

$$(5.6) < f(t, \cdot), F_t(y) > = < f(0, \cdot), F_0(y) > + \int_0^t < (Af + g_y f(u, \cdot), F_u(y) > du - \int_0^t < f(u, \cdot), F_u(y) > < g_y(u, \cdot), F_u(y) > du, f \in \underline{p}_A$$

with the initial condition $F_0(y) = \Psi \circ X_0^{-1}$ in the class of $\{K_{\xi}\}$ satisfying (4.5).

Proof: Since

$$|q_y(t,x)| \le ||h_t(x)||_{\underline{K}}^2 + \frac{1}{2}||y_t||_{\underline{K}}^2$$

and

$$g_{y}(t,x) \leq \frac{1}{2} ||y_{t}||_{\underline{K}}^{2}$$
,

it follows that for all $v \in H$, g_v satisfies (2.17) and (2.18). Thus (1) follows from Theorem 6 and (ii) from Theorem 7.

Remark: Theorem 9 was proved in [3] under the much stronger condition

(5.7)
$$||h_t(x)|| \leq a_t \quad \text{with } \int_0^T a_t^2 dt < \infty .$$

The equations (5.5) and (5.6) are analogues of the Zakai and Fujisaki-Kallianpur-Kunita equations. In $\begin{bmatrix} 3 \end{bmatrix}$, $\Gamma_{t}(y)$ and $\Gamma_{t}(y)$ were also characterized as unique solutions to another type of equations (equations (3.4) and (3.11) in $\begin{bmatrix} 3 \end{bmatrix}$) under the condition (5.7). With a little bit of work, it can be shown that (5.7) can be replaced by (5.1) in these results as well.

References

- 1. Ash, R.: Real Analysis and Probability, Academic Press, New York (1972).
- 2. Dynkin, E.B.: Markov processes, Vol. 1, Springer-Verlag, Berlin (1965)
- 3. Kallianpur, G. and Karandikar, R.L.: Measure valued equations for the optimum filter in finitely additive nonlinear filtering theory. Z.Wahrscheinlichkeitstheorie værw, Geb., 66, 1-17 (1984).
- 4. Kallianpur, G. and Karandikar, R.L.: White noise calculus and nonlinear filtering theory. The Annals of Probability 13, 1033-1107 (1985).
- 5. Stroock, D.W. and Varadhan, S.R.S.: Multidimensional diffusion processes, Springer-Verlag, Berlin (1979).

FND DATE FILMED DEC. 1987